Abstract |
Ceramide-1-phosphate (Cer-1-P), one of the simplest of all sphingophospholipids, occurs in minor amounts in biological membranes. Yet recent evidence suggests important roles of this lipid as a novel second messenger with crucial tasks in cell survival and inflammatory responses. We present a detailed description of the physical chemistry of this hitherto little explored membrane lipid. At full hydration Cer-1-P forms a highly organized subgel (crystalline) bilayer phase (Lc) at low temperature, which transforms into a regular gel phase (Lβ) at ∼45°C, with the gel to fluid phase transition (Lβ–Lα) occurring at ∼65°C. When incorporated at 5 mol % in a phosphatidylcholine bilayer, the pKa2 of Cer-1-P, 7.39 ± 0.03, lies within the physiological pH range. Inclusion of phosphatidylethanolamine in the phosphatidylcholine bilayer, at equimolar ratio, dramatically reduces the pKa2 to 6.64 ± 0.03. We explain these results in light of the novel electrostatic/hydrogen bond switch model described recently for phosphatidic acid. In mixtures with dielaidoylphosphatidylethanolamine, small concentrations of Cer-1-P cause a large reduction of the lamellar-to-inverted hexagonal phase transition temperature, suggesting that Cer-1-P induces, like phosphatidic acid, negative membrane curvature in these types of lipid mixtures. These properties place Cer-1-P in a class more akin to certain glycerophospholipids (phosphatidylethanolamine, phosphatidic acid) than to any other sphingolipid. In particular, the similarities and differences between ceramide and Cer-1-P may be relevant in explaining some of their physiological roles.
|
Recommended Citation |
Kooijman, Edgar E; Sot, Jesus; Montes, L. Ruth; Alonso, Alicia; Gericke, Arne; de Kruijff, Ben; Kumar, Satyendra; Goni, Felix M. (2008). Membrane organization and ionization behavior of the minor but crucial lipid ceramide-1-phosphate. Biophysical Journal 94(11) 4320-4330. doi: 10.1529/biophysj.107.121046. Retrieved from https://oaks.kent.edu/bscipubs/7
|
Copyright 2007 Biophysical Society. Available on publisher's site at http://dx.doi.org/10.1529/biophysj.107.121046.