Author(s) | |
---|---|
Abstract |
It is well-known that solitary waves on shallow water can be modeled by nonlinear KdV and nonlinear Schrodinger (NLS) equations. These equations may be deduced from the operator Lax equation Ablowitz-Kaup-Newel-Segur proposed to use the matrix version of Lax equation to produce solvable nonlinear equation. This presentation gives the extension of the Lax equation on a time-space scale. Using this extension, we deduce NLS on a space scale. |
Format | |
Publication Date |
2015-04-24
|
Subject | |
Comments |
Anita Mizer is a mathematics major concentrating in actuarial science with a business minor. She is in her senior year and aspires to pursue a field examining casualty insurance. She enjoys time spent with her puppies, Kiddo and Eko, and time spent studying and typing mathematics.